
Eur. Phys. J. B 49, 195–203 (2006)
DOI: 10.1140/epjb/e2006-00045-9 THE EUROPEAN

PHYSICAL JOURNAL B

Short-time dynamics and critical behavior
of three-dimensional bond-diluted Potts model

J.Q. Yin1,2, B. Zheng1,2,a, V.V. Prudnikov3, and S. Trimper2

1 Zhejiang University, Zhejiang Institute of Modern Physics, Hangzhou 310027, P.R. China
2 FB Physik, Universität – Halle, 06099 Halle, Germany
3 Department of Theoretical Physics, Omsk State University, Mira prospekt 55-A, Omsk 644077, Russia

Received 31 August 2005
Published online 17 February 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The short-time dynamics of the three-dimensional bond-diluted 4-state Potts model is investi-
gated with Monte Carlo simulations. A recently suggested nonequilibrium reweighting method is applied,
and the tricritical point is determined with the short-time dynamic approach. Based on the dynamic scaling
form, both the dynamic and static critical exponents are estimated for the second order phase transition.
Dynamic corrections to scaling are carefully considered.

PACS. 64.60.Ht Dynamic critical phenomena – 75.40.Mg Numerical simulation studies – 64.60.Fr
Equilibrium properties near critical points, Critical exponents – 05.50.+q Lattice theory and statistics
(Ising, Potts, etc.)

1 Introduction

The influence of quenched disorder on phase transitions
has attracted considerable interest in the field of statisti-
cal physics. Earlier theoretical works [1–3] on disordered
systems indicate that quenched disorder could produce
rounding of a first-order phase transition, and thus in-
duce a second-order one. The pure Potts model exhibits a
temperature-driven first- or second-order phase transition,
depending on the number of states q and spatial dimen-
sion D. The disordered Potts model is therefore a good
laboratory for the study of the effect of quenched disor-
der on phase transitions. Along this understanding, many
activities in the last decade have been devoted to the dis-
ordered Potts model in two dimensions [4–12].

For the disordered Potts model in higher dimensions,
theoretically it is shown that a tricritical point may appear
at a finite concentration of impurities [6], and it separates
the first- and second-order transitions. In three dimen-
sions, for understanding the influence of disorder on first-
order transitions, the first numerical study of the Potts
models with quenched disorder was presented in refer-
ence [13], and recently, the site-diluted three-state and
bond-diluted four-state Potts models [14–16] have been
studied with Monte Carlo simulations. Numerical evidence
for the existence of a tricritical point was reported. The
tricritical point was located to be around the bond con-
centration p = 0.76(8), and the critical exponents of the
induced continuous transition are estimated [15,16]. The
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exponents seems to be dilution-dependent, and such a be-
havior is attributed to the strong corrections to scaling.

In 1989, with renormalization group methods Janssen,
Schaub, and Schmittmann derived a dynamic scaling
form, which is valid up to the macroscopic short-time
regime, after a microscopic time scale tmic [17]. The sys-
tem initially at a high temperature state with a small
magnetization is suddenly quenched to the critical tem-
perature, and then released to the dynamic evolution of
model A. Such a short-time dynamic scaling behavior has
been numerically verified [18–22], and it is also consis-
tent with relevant theories and experiments in spin glasses.
Furthermore, the short-time dynamic scaling can be ex-
tended to the dynamic relaxation starting from an ordered
state [21,23,24].

More interestingly, based on the short-time dynamic
scaling, it is possible to extract not only the dynamic ex-
ponents, but also the static exponents as well as the crit-
ical temperature [21,25–27]. Since the measurements are
carried out in the short-time regime of the dynamic evo-
lution, the method does not suffer from critical slowing
down. What we pay for this approach is that the mea-
surements of the dynamic exponents and static exponents
can not be separated. Therefore, the statistical errors of
the static exponents include those from the dynamic ex-
ponents. However, if we are also interested in the dynamic
behavior, the short-time dynamic approach is rather use-
ful. Compared with the non-local cluster algorithms, the
dynamic approach does study the dynamics local in time,
and in general applies also to disordered and frustrated
systems [12,25,28–30].
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On the other hand, in the last two decades, much ef-
fort [31–35] has been devoted to the subject of reweight-
ing techniques in Monte Carlo simulations in equilib-
rium. These reweighting methods have greatly improved
the efficiencies of Monte Carlo simulations in many as-
pects. Therefore, it is rather appealing to develop a dy-
namic reweighting method [36]. Recently, a rather generic
reweighting method for nonequilibrium Markov processes
was presented by Lee and Okabe [37]. With nonequilib-
rium Monte Carlo simulations at a single temperature,
one obtains the dynamic evolution of physical quantities
at different temperatures. But it is somewhat unsatisfac-
tory that for the procedure suggested in reference [37], the
reweighting temperatures need to be fixed before simula-
tions, and one pays extra computer times in proportion to
the number of the reweighting temperatures.

The purpose of this article is to study numerically the
effect of quenched randomness on the softening of the
first-order phase transition, with the short-time dynamic
approach. Using an improved dynamic reweighting tech-
nique, we perform extensive dynamic Monte Carlo simula-
tions for the three-dimensional bond-diluted 4-state Potts
model, and provide a relatively accurate estimate of the
tricritical point. The short-time dynamic approach to the
weak first-order phase transition and application of the
dynamic reweighting methods are attractive in this con-
text. Based on the short-time dynamic scaling form with
corrections to scaling, both static and dynamic critical ex-
ponents of the induced continuous phase transition are
extracted.

The models, the dynamic scaling analysis and an im-
proved nonequilibrium reweighting method are described
in Section 2. Numerical simulations are presented in Sec-
tion 3. The final section contains the conclusions.

2 Model and method

2.1 The bond-diluted Potts model

The Hamiltonian of the three-dimensional q-state Potts
model with quenched random interactions can be written
as

− 1
kBT

H =
∑

<i,j>

Kijδσi,σj , Kij > 0, (1)

where the spin σi takes the values 1,· · · q, δσi,σj is the
Kronecker delta function, and the sum is over nearest-
neighbor pairs on a cubic lattice. For the bond-diluted
case, the dimensionless couplings Kij are selected from
two different values of K and 0, according to a bimodal
distribution,

P (Kij) = pδ(Kij − K) + (1 − p)δ(Kij). (2)

The case of p = 1 corresponds to the pure Potts model.
In this paper, we study the case of q = 4 with the short-

time dynamic approach and dynamic reweighting tech-
niques. Monte Carlo simulations with a standard Metropo-
lis algorithm are performed on a three-dimensional cubic

lattice with periodic boundary conditions. For a review of
the short-time critical dynamics and its applications, see
references [21,27].

The physical observables we measure are the time-
dependent magnetization, its second moment, and the
auto-correlation function respectively defined as

M(t) =
q

(q − 1)L3

〈
∑

i

(
δσi(t),1 −

1
q

)〉
, (3)

M (2)(t) =
q2

(q − 1)2L6

〈[
∑

i

(
δσi(t),1 −

1
q

)]2〉
, (4)

A(t) =
q

(q − 1)L3

〈
∑

i

(
δσi(0),σi(t) −

1
q

)〉
, (5)

where L is the lattice size, and the average 〈...〉 is over
the microscopic configurations of the macroscopic ini-
tial states and the realizations of the bond-diluted cou-
plings Kij .

The static critical behavior of the three-dimensional
bond-diluted 4-state Potts model has been investigated
by Chatelain et al. [15,16]. Evidences are given for the ex-
istence of a tricritical point, and critical exponents in the
second order transition regime are estimated with finite
size scaling techniques. Our aim is to study the short-time
dynamics of the model. From the short-time dynamic be-
havior, the transition temperatures and critical exponents
will be extracted. Especially, the short-time dynamic ap-
proach to the weak first-order phase transition allows a
relatively accurate estimate of the tricritical point. On the
other hand, it is also interesting to improve and apply the
dynamic reweighting method.

2.2 Nonequilibrium reweighting method

Ferrenberg and Swendsen [31] first introduced the his-
togram reweighting method in Monte Carlo simulations
to calculate statistical properties of a system in equilib-
rium. The thermal averages for a range of temperatures
can be obtained from simulations at a single tempera-
ture. Then the multi-histogram algorithm was proposed
[32] to increase the effective reweighting range and min-
imize the statistical errors. A great improvement was
achieved when the artificial ensembles were applied to
the reweighting methods [33,35]. Instead of the canon-
ical distribution of the energy histogram, a “flat” his-
togram was obtained. Recently, Wang and Landau [34]
presented a simple method to obtain the flat histogram.
These reweighting techniques have greatly improved the
efficiencies of Monte Carlo simulations in equilibrium.

Very recently, a reweighting method applicable to
nonequilibrium Markov processes was reported [37]. Con-
sider a simulation up to the t-th Monte Carlo step as a
sequence of states,

xt = (σ1, σ2, · · · , σt), (6)
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where σt is the spin configuration of the system at time t.
Hereafter, we refer to the Monte Carlo step simply as the
time of simulation. At an inverse temperature β = 1/kBT ,
the dynamical thermal average of an observable O(t) can
be obtained by 〈O(t)〉β = (1/n)

∑n
j=1 O(σj

t ), where σj
t are

the spin configurations from {xj
t , j = 1, · · · , n}, a set of

paths obtained in the simulations at a fixed β. To cal-
culate the dynamical thermal average at another inverse
temperature β′, the measured observable O(σj

t ) has to be
reweighted with a set of weights {wj

t}. For the same set
of paths {xj

t}, the thermal average at β′ is obtained as

〈O(t)〉β′ =
n∑

j=1

wj
t O(σj

t )/
n∑

j=1

wj
t . (7)

Here the weights wj
t can be obtained by

wj
t+1 =

Pβ′(σj
t+1|σj

t )

Pβ(σj
t+1|σj

t )
wj

t with wj
1 = 1 (8)

where the P (σj
t+1|σj

t ) is the transition probability of the
Monte Carlo algorithm.

However, if the weights are directly updated in the al-
gorithm as in reference [37], one need predetermine the
reweighting temperatures. The more temperatures we in-
tend to reweight, the more computer time it will take in
the simulation. Especially, in some cases one is not sure
which temperatures are needed before the simulations. To
improve the algorithm, we propose the following algorithm
to calculate the weights.

1. Choose a spin and flip it according to the Metropolis
algorithm, with a transition probability Pβ(σ′j |σj

t ) =
min[1, exp(−β∆E)]. Here, ∆E is the energy change
due to the trial spin flip from σj

t to σ′j .
2. At this point, there are three possible outcomes,

(a) if ∆E ≤ 0, the trial spin flip is always accepted and
we need do nothing;

(b) if ∆E > 0 and the trial spin flip is accepted, we
add 1 to nj

b(∆E, t);
(c) if ∆E > 0 and the trial spin flip is rejected, we add

1 to nj
c(∆E, t).

Here, nj(∆E, t) is a function to count the number of a
certain energy change ∆E up to time t in the path j.
nj(∆E, t) should be updated in every spin flip, but
recorded only at the time steps when the measure-
ments are performed.

Obviously, the set of weights wj
t depend on the simulation

temperature β, the new temperature β′ and the energy
change ∆E, but not on the concrete spin configuration.
We can restore different sets of weights at different tem-
peratures from the same set of ∆E by

wj
t =

∏

∆E

exp(−(β′ − β)nj
b(∆E, t)∆E)

×
∏

∆E

[
1 − exp(−β′∆E)
1 − exp(−β∆E)

]nj
c(∆E,t)

(9)

where the product is over all possible energy change ∆E
due to the spin flip. In fact, the first term can be written
as exp(−(β′−β)Ej

b (t)). Here, Ej
b (t) is to record the sum of

the energy change in the case b of step 2 up to time t. For
the nearest interaction, the number of ∆E is very small.
Using this algorithm, we add nearly no extra computer
time to a single simulation and in principle, can reweight
the observables to any temperatures that need not to be
predetermined.

2.3 Dynamic scaling analysis

In the last decade, it has been discovered that already in a
macroscopic short-time regime emerges the universal scal-
ing behavior. The physical origin of the scaling behavior is
the divergent correlating time at the second-order phase
transition. A dynamic scaling form which is valid up to the
macroscopic short-time regime, has been derived with an
ε-expansion up to two loop order by Janssen et al. [17,21],
and its finite size form, e.g. for the k-th moment of the
magnetization, is written as

M (k)(t, τ, L, m0) = b−kβ/νM (k)(b−zt, b1/ντ, b−1L, bx0m0).
(10)

Here b is a rescaling factor, τ is the reduced temperature,
β and ν are the static critical exponents and z is the dy-
namic exponent, while the new independent exponent x0

is the scaling dimension of the initial magnetization m0,
and m0 is assumed to be small around the fixed point
m0 = 0. It is important that from the scaling behavior of
equation (10) it is possible to extract not only the dynamic
exponent x0 and z but also the static exponents and tran-
sition temperature originally defined in equilibrium. Since
the non-equilibrium spatial correlation length at the early
stage of the time evolution is small, the finite size effect
can be easily controlled. Measurements now are carried
out at the early stage of the time evolution, therefore one
does not suffer from critical slowing down.

In general, for determination of the dynamic expo-
nent z and static exponents, a dynamic process starting
from a completely ordered state is more favorable, since
fluctuation is less. In this case, the dynamic system is at
another fixed point m0 = 1 (in contrast to the fixed point
m0 = 0 relevant for Eq. (10)). The scaling variable m0

now becomes irrelevant for the dynamic scaling behavior,
and it can be simply removed from equation (10) [21]. As-
suming the lattice is sufficiently large, the dynamic scal-
ing form of the magnetization around the critical point is
written as

M(t, τ) = t−c1F (t1/νzτ), c1 = β/νz . (11)

If τ = 0, the magnetization decays by a power law
M(t) ∼ t−c1. If τ �= 0, the power-law behavior is mod-
ified by the scaling function F (t1/νzτ). From this fact,
one determines the critical point and the critical exponent
β/νz. To estimate the exponent 1/(νz), we differentiate
ln M(t, τ) and obtain

∂τ ln M(t, τ)|τ=0 ∼ tcl , cl = 1/νz . (12)
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In order to measure the dynamic exponent z indepen-
dently, we introduce a time-dependent Binder cumulant
U = M (2)/M2 − 1, and the finite size scaling analysis
shows

U(t, L) ∼ tc2 , c2 = d/z . (13)

For a magnetic system which is initially in a high-
temperature state, suddenly quenched to the critical tem-
perature Tc, and then released for the dynamic evolu-
tion, two interesting observables are the second moment of
the magnetization and the auto-correlation function. For
τ = 0 and m0 = 0, it is well known [18,21]

M (2)(t) ∼ ty, y = (d − 2β/ν)/z. (14)

Careful analysis [38] reveals that the auto-correlation
function behaves like

A(t) ∼ t−λ, λ = d/z − (x0 − β/ν)/z. (15)

Interesting here is that even though m0 = 0, the expo-
nent x0 still enters the auto-correlation function. This be-
havior has been confirmed in a variety of statistical sys-
tems [18,21].

2.4 Dynamic criterion for weak first-order phase
transitions

At the second-order transition temperature Tc, the short-
time behavior of physical observables obeys a power law
in dynamic processes starting from both a random and an
ordered states. Away from Tc, the power-law behavior is
modified by a scaling function [21]. If the phase transition
is of first-order, independent of the initial states, physical
observables at the transition temperature do not present
a power-law behavior due to the finite correlating time
and/or the symmetry breaking.

Around a first-order transition point, it is well known
that for K > Kc there is a disordered meta-stable state,
which vanishes at a certain K∗. For K < Kc there exists
an ordered meta-stable state, which disappears at K∗∗.
For a weak first-order phase transition, both K∗ and K∗∗
look like critical points if the system remains in the dis-
ordered and ordered meta-stable states, respectively. K∗
and K∗∗ are named disordered and ordered pseudo critical
points respectively.

In equilibrium, numerical measurements of K∗ and
K∗∗ are not easy due to finite-size effects. However, in
the short-time dynamics, K∗ and K∗∗ can be determined
relatively confidently. Starting from a high temperature
state, the system at K > Kc first reaches the disordered
meta-stable state. Due to the large correlating time in-
duced by the large spatial correlation length in the meta-
stable state, physical observables at K∗ present an ap-
proximate power-law behavior. The weaker the transition
is, the cleaner the power-law behavior will be. This give an
estimate of K∗. Starting from a zero temperature state,
the system at K < Kc first reaches the ordered meta-
stable state and one can determine K∗∗. At a second-order
phase transition, K∗ and K∗∗ overlap with the transition

point Kc. Therefore, as Schülke and Zheng suggested [39],
the difference of K∗ an K∗∗ gives a criterion for a weak
first-order transition. This method has been successfully
applied to a couple of physical systems [40,41].

3 Numerical simulations

We have performed Monte Carlo simulations with the
standard Metropolis algorithm. The maximum updating
time is taken to be from 500 to 3000 Monte Carlo time
steps, depending on the lattice sizes and the specific ob-
servables. Large parts of results are presented with a lat-
tice size L = 40. At the bond concentration p = 0.56,
additional simulations have been performed for L = 64
and 96 to investigate possible finite size effects, and to ex-
tract more accurate exponents. Samples of the disordered
couplings {Kij} for averaging are mostly from 5000 for
the ordered start to 20 000 for the disordered start.

To estimate the errors, total samples are divided into
three or four subgroups. Statistical errors are then calcu-
lated from independent measurements of these subgroups
of samples. In addition, results of the measurements may
fluctuate also for different time windows [t1, t2] in which
the measurements are performed. These errors will be
taken into account, if they are comparable to statistical
errors. Corrections to scaling are carefully considered.

3.1 The tricriticality

In references [15,16], the disorder-induced tricritical point
was estimated between bond dilutions p = 0.68 and
p = 0.84, and below the tricritical point the transition
is softened to second order. We start our simulations with
p = 0.78. In Figure 1a, the magnetization with an ordered
initial state is obtained from simulations at a single tem-
perature K = 0.80415 and then reweighted to the temper-
atures K = 0.8043 and 0.8040; the average is taken over
5000 samples. Searching for a temperature, with which the
curve exhibits the best power-law-like behavior, one deter-
mines the ordered pseudo critical point K∗∗ = 0.80414(6).
In order to confirm the dynamic reweighting approach, we
have also performed simulations at K = 0.8043 and 0.8040
and compared the data with the reweighting ones from the
simulation at K = 0.80415. This is shown in Figure 1a.
Within fluctuations, the curves from direct simulations
overlap with those from reweighting. In Figure 1b, simu-
lations are performed at K = 0.8050, 0.8046 and 0.8042
with disordered starts, and K∗ = 0.80468(13) is estimated
from M (2)(t). Obviously, K∗ is bigger than K∗∗, and this
indicates that the phase transition is of first order. For a
second-order phase transition, K∗ and K∗∗ overlap.

Carefully decreasing the bond concentration, at p =
0.76 we obtain K∗∗ = 0.82541(6) and K∗ = 0.82558(7)
from M(t) and M (2)(t), as shown in Figure 2 respec-
tively. Taking into account the errors, one may still ob-
serve K∗∗ < K∗, and the phase transition remains as a
first-order one although the discontinuity is very weak [39].
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Fig. 1. The magnetization and second moment for the bond concentration p = 0.78 with a lattice size L = 40 plotted vs.
t on a log-log scale: (a) M(t) with an ordered start, obtained with the dynamic reweighting method from simulations at a
single temperature K = 0.80415. The dash line is the closest to the pseudo critical point K∗∗. For comparison, other two direct
simulations at temperatures K = 0.8043 and 0.8040 are displayed with circled lines. (b) M (2)(t) with a disordered start from
simulations at three different temperatures K = 0.8050, 0.8046 and 0.8042. The dash line is the closest to the pseudo critical
point K∗.

100 1000

0.1

100 1000

0.1

(from above)

p=0.76 K = 0.82555

0.8254

p=0.68 K = 0.92385

0.92305

0.92255

(from above)

0.82525 

t

M(t)

0.2

(a)
100 100010

-4

10
-3

p=0.76 K = 0.8257

0.82555

0.8254

p=0.68 K = 0.92385

0.92305

0.92255

(from  above)

(from above)

t

M  (t)
(2)

(b)

Fig. 2. The magnetization and second moment for p = 0.68 and p = 0.76 with a lattice size L = 40 plotted vs. t on a log-log
scale: (a) M(t) with an ordered start from simulations at a single temperature K = 0.82535 for p = 0.76, and at three different
temperatures K = 0.9238, 0.9230 and 0.9224 for p = 0.68, respectively. The dash line is the closest to the pseudo critical points
K∗∗. (b) M (2)(t) with a disordered start from simulations at a single temperature K = 0.8256 for p = 0.76, and at three different
temperatures K = 0.9238, 0.9230 and 0.9224 for p = 0.68. The dash line is the closest to the pseudo critical point K∗.

The same process is applied to p = 0.68. The magne-
tization and second moment with an ordered and a dis-
ordered start are plotted in Figure 2, respectively. Care-
fully analyzing the data from simulations, we find out
K∗ = 0.92310(23) and K∗∗ = 0.92315(32). The values
of the pseudo critical points K∗ and K∗∗ overlap within
the error bars, and this shows that the phase transition is
rounding to a continuous one. Clearly, there exists a tri-
critical point between p = 0.68 and 0.76, i.e. pc = 0.72(4).

To obtain a more accurate estimate of the tricritical
point, we also perform simulations at p = 0.72. The cross-
over effect is a little stronger when p is close to the tri-
critical point, but we can extract K∗ = 0.87145(17) and
K∗∗ = 0.87141(19), which indicates that the transition is

of second order. So, more accurately, the tricritical point
is expected at pc = 0.74(2). All the results of K∗, and
K∗∗ are summarized in Table 1. The critical tempera-
ture Kc of second order transitions can be calculated from
(K∗+K∗∗)/2, and (K∗+K∗∗)/2 also give a good estimate
of transition points for weak first-order transitions [39].

Here we should mention that since the bond concentra-
tions we investigate are rather close to the tricritical point,
corrections to scaling are relatively strong especially for
the simulations with the ordered initial state [42]. There-
fore, in order to extract the pseudo critical points reliably,
we sometimes perform simulations at a couple of temper-
atures and then interpolate the data to other tempera-
tures to estimate K∗∗s and K∗s. In order to measure the
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Table 1. Pseudo critical points K∗∗ and K∗ measured with the short-time dynamic approach for the 3D bond-diluted 4-state
Potts model at different bond concentrations p. The tricritical point is estimated to be pc = 0.74(2).

p = 0.44 p = 0.56 p = 0.68 p = 0.72 p = 0.76 p = 0.78

K∗∗ 1.4821(3) 1.1298(4) 0.92315(32) 0.87141(19) 0.82541(6) 0.80414(8)

K∗ 1.4822(2) 1.1301(5) 0.92310(23) 0.87145(17) 0.82558(7) 0.80468(13)

100 100010
-5

10
-4

p=0.56

t

M  (t)
(2)

(a)

10 100

10
-4

10
-3

10
-2

10
-1

p=0.56 

t

A(t)

(b)

Fig. 3. The second moment and auto-correlation function with a disorder start for p = 0.56 plotted vs. t on a log-log scale:
(a) M (2)(t) is plotted with a solid line for a lattice size L = 64. The dashed line shows a power-law fit. The circled line is for a
lattice size L = 40 to a maximum time t = 1000. (b) A(t) is plotted with a solid line for a lattice size L = 64. The dashed line
shows a fit with corrections to scaling.

critical exponents for the continuous transition at p = 0.68
as it will be discussed in the next subsection, we reweight
the data at the temperature from direct simulations to
the critical points, and then considered the corrections to
scaling.

3.2 Critical exponents of the continuous phase
transition

Now let us concentrate on the critical properties of
disorder-induced continuous transitions. We start our sim-
ulations at the bond concentration p = 0.56. Since p =
0.56 is away from both the percolation transition point
and tricritical point, corrections to scaling are relatively
small. In Figure 3, the second moment and autocorrela-
tion directly measured at critical points with a disordered
start are displayed with solid lines on a log-log scale. The
simulations are performed up to a maximum updating
time 1500 with a lattice size L = 64, and the averages
are taken over 24 000 samples. In Figure 3a, M (2)(t) ex-
hibits a perfect power-law behavior in equation (14) in
a time interval [t1, t2] = [30, 1500]. Thus the exponent
y = (d − 2β/ν)/z = 0.646(3) can be estimated from the
slope of the curve. Corrections to scaling are not needed
here.

In order to examine the possible finite size effect and
confirm our results, simulations at the same temperature
have been performed with a lattice size L = 40 up to a
maximum time 1000, as shown with circled line in Fig-
ure 3a. Obviously, within 1000 time steps, the curves of

L = 40 and 64 overlap each other within fluctuations. Ac-
cording to the finite-size scaling theory, the time scale for
the finite size effect is ∼Lz. At p = 0.56, the dynamic
exponent z is estimated to be 2.60(5) as discussed below.
Therefore, negligible finite-size effects are expected for the
data of L = 64 in the time regime in Figure 3a.

The autocorrelation function is plotted in Figure 3b.
Corrections to scaling are rather strong even looking by
eyes. Therefore, we fit the curve to the form of A(t) ∼
t−λ(1+c/tb) according to equation (15). A good fit of A(t)
is found in the time interval [5, 500], and the exponent
λ = d/z − (x0 − β/ν)/z and correction exponent b are
estimated to be λ = 0.948(15) and b = 0.43, respectively.
The fluctuation beyond t = 500 is very large since the
exponent λ is big.

Further, we turn to simulations with an ordered initial
state at p = 0.56. The fluctuation of the dynamic variables
in this process is less than that with a disordered start.
However, corrections to scaling are relatively stronger. In
Figure 4a, the magnetization and Binder Cumulant are
displayed on a double-log scale. Simulations are performed
with a lattice size up to 96 and a maximum time up to
3000; averages are taken over 7000 samples. Due to the
cross-over effect, corrections to scaling of M(t) and U(t)
are detected in the early times. Thus, in Figure 4a we
fit the curve of M(t) to the form of M(t) ∼ t−β/νz(1 +
c/tb) according to equation (11). The correction exponent
b for M(t) is about 0.05. The small correction exponent b
indicates that one may also fit the curve with a logarithmic
correction to scaling, M(t) ∼ t−β/νz(1 + cln t). Actually,
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Fig. 4. The magnetization, Binder cumulant and ∂τ ln M(t, τ )|τ=0 with an order start plotted vs. t on a log-log scale: (a) M(t)
and U(t) are plotted with solid lines for p = 0.56 with a lattice size L = 96. Dashed lines show fits with corrections to scaling.
The circled line is for a lattice size L = 40 to a maximum time t = 1000. (b) ∂τ ln M(t, τ )|τ=0 is plotted with solid lines for
p = 0.44, 0.56 and 0.68 with a lattice size L = 40. Dash lines show fits with corrections to scaling.

fitting with a logarithmic correction is more stable than a
power-law correction. From the exponent β/νz = 0.250(2)
estimated here and y = (d− 2β/ν)/z = 0.646(3) obtained
in the dynamic process with a disordered start, we can
determine the static exponent β/ν = 0.654(14) and the
dynamic exponent z = 2.62(3).

Similar as the cases with a disordered start, simula-
tions are also performed for M(t) with an ordered start
and with a lattice size L = 40 and the maximum time
t = 1000, as displayed with the circled line in Figure 4a.
The curves for both L = 40 and 96 coincide well within
1000 time steps, and it shows that the finite size effect is
negligible small in the time regime [10, 3000] for a lattice
size L = 96.

In Figure 4a, the time-dependent Binder cumulant is
fitted to the form of U(t) ∼ td/z(1 + c/tb) according to
equation (13), in order to extract the dynamic exponent z
independently. The result z = 2.60(4) is in good agree-
ment with z = 2.62(3) obtained from c1 = β/νz and
y = (d − 2β/ν)/z above. Here the exponent b = 0.13
is also rather small.

To estimate the index cl = 1/νz from equation (12), we
perform simulations at temperatures in the neighborhood
of the transition point to approximate the differentiation
of ln M(t, τ). As usual, relatively large corrections to scal-
ing are detected. In Figure 4b, the curve is fitted to the
form of ∂τ ln M(t, τ)|τ=0 ∼ t1/νz(1+c/tb). The exponent
b is estimated to be 0.18. All our measurements of the in-
dices y, λ, c1, cl and c2 at p = 0.56 are summarized in
Table 2. To deduce the static exponents β/ν and 1/ν, an
averaged value z = 2.61 of the dynamic exponent is used.

Finally, we have performed simulations at p = 0.44 and
0.68 to complete our study in the second order regime.
The data at critical points are reweighted from simula-
tions at K = 1.14218 and 0.92305 for p = 0.44 and 0.68,
respectively. The same power-law corrections to scaling
are applied to extract the critical exponents. In Figure 5,
the curves of M (2)(t) and A(t) with disordered starts are

Table 2. Critical exponents of the 3D bond-diluted 4-state
Potts model at different bond concentrations p, measured
from the dynamic observables M (2)(t), A(t), M(t), U(t) and
∂τ ln M(t, τ )|τ=0, respectively, starting from both the ordered
and disordered initial states.

m0 p = 0.44 p = 0.56 p = 0.68

y = (d − 2β/ν)/z 0.0 0.587(4) 0.646(3) 0.950(17)

λ 0.895(7) 0.948(15)

c1 = β/νz 1.0 0.173(3) 0.250(2) 0.257(5)

c2 = d/z 0.923(21) 1.153(17) 1.493(42)

cl = 1/νz 0.433(15) 0.546(11) 0.711(8)

z = d/c2 3.25(8) 2.60(4) 2.01(6)

z = d/(y + 2c1) 3.22(4) 2.62(3) 2.05(4)

β/ν = zc1 0.56(2) 0.653(14) 0.522(23)

1/ν = zcl 1.40(9) 1.425(51) 1.443(57)

shown in solid lines with a double-log scale. At p = 0.44,
just like the case of p = 0.56, corrections of M (2)(t) are
negligible and a nice power-law is observed in the time
interval [20, 1000], as shown in Figure 5a. But corrections
to scaling seem to be stronger for p = 0.68. To extract the
exponent, the corrections to scaling have to be taken into
account. We estimated the correction exponent b = 0.44
for A(t) at p = 0.44, and 0.15 for M (2)(t) at p = 0.68.

In Figure 5b, due to rather strong cross-over effects
and large fluctuations even after t = 100 for p = 0.68, we
could not fit the curve of A(t) stably in such a limited
time regime. As to the M(t) and U(t) with an ordered
initial state, good fits can be clearly seen in Figure 6. The
curves of ∂τ ln M(t, τ)|τ=0 are plotted in Figure 4b. Here
the exponent b for M(t), U(t) and ∂τ ln M(t, τ)|τ=0 are
0.07, 0.21 and 0.16 for p = 0.44, and 0.12, 0.35 and 0.19
for p = 0.68. All the results of p = 0.44 and 0.68 are also
summarized in Table 2.
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In summary, our results support the existence of a tri-
critical point between the bond concentrations p = 0.68
and 0.84 reported in references [15,16], and with the short-
time dynamic approach, we obtain a relatively more ac-
curate tricritical point pc = 0.74(2). For p = 0.56, the
static exponent β/ν = 0.653(14) is in good agreement
with β/ν = 0.65(5) extracted from the finite size scal-
ing in equilibrium with lattices up to L = 96 in refer-
ence [15]. For p = 0.44 and 0.68, the exponent β/ν takes
values 0.56(2) and 0.522(23) respectively, which should
be compared with 0.534(14) and 0.547(51) obtained from
simulations in equilibrium with lattices up to L = 128
for p = 0.44 and L = 64 for p = 0.68 [16]. The non-
monotonous behavior of β/ν may be considered as the
effect of the percolation point p = 0.2488126(5) [43] and
tricritical point p = 0.74(2), and expects a random fix
point in between [16].

Our estimate of the critical exponent ν shows rather
weak dependence on the bond concentration p, and 1/ν
takes values 1.40(9), 1.425(51) and 1.443(57) for p = 0.44,
p = 0.56 and p = 0.68 respectively. These values are some-
what bigger than 1.36(2), 1.33(3) and 1.38(8) reported
in reference [16], but closer to 1/ν = 1.462(11) for the
3D site-diluted Ising model [44], and 1/ν = 1.449(11) for
the 3D site-diluted 3-state Potts model [14]. In addition,
we also provide the dynamic exponents z and λ, and the
dynamic exponent z is bond concentration p dependent.
Different from the case of β/ν, the dependence of z on
p is monotonous. This should be understandable for the
dynamics should become slower as p decreases.

In reference [16], an extrapolation from finite lattices
to L → ∞ is suggested, and for p = 0.56, the extrapo-
lated exponents are β/ν = 0.732(24) and 1/ν = 1.339(25).
Since we have considered the corrections to the scaling in
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the time direction, here we do not try to perform a similar
extrapolation to the limit t → ∞. Actually, how to carry
out the extrapolation is not very unique and might con-
tain also certain uncertainty. In the short-time dynamic
approach, the finite size effect is negligibly small for the
lattices and time regimes we investigate.

4 Conclusion

With extensive Monte Carlo simulations, we investigate
the short-time dynamics of the three-dimensional bond-
diluted 4-state Potts model. Special attention is given
to the effect of disorder on the rounding of the phase
transitions of, and a relatively accurate estimate of the
tricritical point pc = 0.74(2) is obtained. In the second-
order phase transition regime, we study the critical be-
havior at three bond concentrations p, and corrections to
scaling are carefully taken into account. We make an at-
tempt to improve the recently suggested nonequilibrium
reweighting method, and apply it to the short-time dy-
namic Monte Carlo simulations. The dynamic approach
shows its merit in estimating the pseudo critical points
K∗ and K∗∗ around a weak first-order phase transition,
and in tackling the dynamic and static properties of dis-
ordered systems.
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(China), DFG (Germany) and RFBR (Russia) through grants
No. 04-02-17524 and No. 04-02-39000.
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